Skip to main content Contents
Prev Up Next \(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 6.2 Arclength (AI2)
Learning Outcomes
Subsection 6.2.1 Activities
Activity 6.2.1 .
Suppose we wanted to find the arclength of the parabola
\(y=-x^2+6x\) over the interval
\([0,4]\text{.}\)
Plot of \(y=-x^2+6x\) over \([0,4]\text{.}\)
Figure 126. Plot of \(y=-x^2+6x\) over \([0,4]\text{.}\)
(a)
Suppose we wished to estimate this length with two line segments where
\(\Delta x=2\text{.}\)
Plot of \(y=-x^2+6x\) over \([0,4]\text{.}\)
Figure 127. Plot of \(y=-x^2+6x\) over \([0,4]\) with two line segments where \(\Delta x=2\text{.}\)
Which of the following expressions represents the sum of the lengths of the line segments with endpoints \((0,0)\text{,}\) \((2,8)\) and \((4,8)\text{?}\)
\(\displaystyle \sqrt{4+8}\)
\(\displaystyle \sqrt{2^2+8^2}+\sqrt{(4-2)^2+(8-8)^2}\)
\(\displaystyle \sqrt{4^2+8^2}\)
\(\displaystyle \sqrt{2^2+8^2}+\sqrt{4^2+8^2}\)
(b)
Suppose we wished to estimate this length with four line segments where
\(\Delta x=1\text{.}\)
Plot of \(y=-x^2+6x\) over \([0,4]\text{.}\)
Figure 128. Plot of \(y=-x^2+6x\) over \([0,4]\) with four line segments where \(\Delta x=1\text{.}\)
Which of the following expressions represents the sum of the lengths of the line segments with endpoints \((0,0)\text{,}\) \((1,5)\text{,}\) \((2,8)\text{,}\) \((3,9)\) and \((4,8)\text{?}\)
\(\displaystyle \sqrt{4^2+8^2}\)
\(\displaystyle \sqrt{1^2+(5-0)^2}+\sqrt{1^2+(8-5)^2}+\sqrt{1^2+(9-8)^2}+\sqrt{1^2+(8-9)^2}\)
\(\displaystyle \sqrt{1^2+5^2}+\sqrt{2^2+8^2}+\sqrt{3^2+9^2}+\sqrt{4^2+8^2}\)
(c)
Suppose we wished to estimate this length with
\(n\) line segments where
\(\displaystyle \Delta x=\frac{4}{n}\text{.}\) Let
\(f(x)=-x^2+6x\text{.}\)
Plot of \(y=-x^2+6x\) over \([0,4]\text{.}\)
Figure 129. Plot of \(y=-x^2+6x\) over \([0,4]\) with \(n\) line segments where \(\displaystyle \Delta x=\frac{4}{n}\text{.}\)
Which of the following expressions represents the length of the line segment from \((x_0, f(x_0))\) to \((x_0+\Delta x, f(x_0+\Delta x))\text{?}\)
\(\displaystyle \sqrt{x_0^2+f(x_0)^2}\)
\(\displaystyle \sqrt{(x_0+\Delta x)^2+f(x_0+\Delta x)^2}\)
\(\displaystyle \sqrt{(\Delta x)^2+f(\Delta x)^2}\)
\(\displaystyle \sqrt{(\Delta x)^2+(f(x_0+\Delta x)-f(x_0))^2}\)
(d)
Which of the following Riemann sums best estimates the arclength of the parabola \(y=-x^2+6x\) over the interval \([0,4]\text{?}\) Let \(f(x)=-x^2+6x\text{.}\)
\(\displaystyle \displaystyle \sum \sqrt{(\Delta x)^2+f(\Delta x)^2}\)
\(\displaystyle \displaystyle \sum \sqrt{(x_i+\Delta x)^2+f(x_i+\Delta x)^2}\)
\(\displaystyle \displaystyle \sum \sqrt{x_i^2+f(x_i)^2}\)
\(\displaystyle \displaystyle \sum \sqrt{(\Delta x)^2+(f(x_i+\Delta x)-f(x_i))^2}\)
(e)
Note that
\begin{align*}
\sqrt{(\Delta x)^2+(f(x_i+\Delta x)-f(x_i))^2} & = \sqrt{(\Delta x)^2\left(1+\left(\frac{f(x_i+\Delta x)-f(x_i)}{\Delta x} \right)^2\right)}\\
&=\sqrt{1+\left(\frac{f(x_i+\Delta x)-f(x_i)}{\Delta x} \right)^2}\Delta x\text{.}
\end{align*}
Which of the following best describes \(\displaystyle\lim_{\Delta x\to 0} \frac{f(x_i+\Delta x)-f(x_i)}{\Delta x}\text{?}\)
\(\displaystyle 0\)
\(\displaystyle 1\)
\(\displaystyle f'(x_i)\)
This limit is undefined.
Fact 6.2.2 .
Given a differentiable function \(f(x)\text{,}\) the arclength of \(y=f(x)\) defined on \([a,b]\) is computed by the integral
\begin{align*}
\lim_{n\to \infty}\sum \sqrt{(\Delta x)^2+(f(x_i+\Delta)-f(x_i))^2} & =\lim_{n\to \infty}\sum \sqrt{1+\left(\frac{f(x_i+\Delta x)-f(x_i)}{\Delta x} \right)^2}\Delta x\\
& = \int_a^b \sqrt{1+(f'(x))^2}dx\text{.}
\end{align*}
Activity 6.2.3 .
Use
Fact 6.2.2 to find an integral which measures the arclength of the parabola
\(y=-x^2+6x\) over the interval
\([0,4]\text{.}\)
Activity 6.2.4 .
Consider the curve \(y=2^x-1\) defined on \([1,5]\text{.}\)
(a)
Estimate the arclength of this curve with two line segments where \(\Delta x=2\text{.}\)
\(x_i\)
\((x_i,f(x_i))\)
\((x_i+\Delta x,f(x_i+\Delta x))\)
Length of segment
\(1\)
\(3\)
(b)
Estimate the arclength of this curve with four line segments where \(\Delta x=1\text{.}\)
\(x_i\)
\((x_i,f(x_i))\)
\((x_i+\Delta x,f(x_i+\Delta x))\)
Length of segment
\(1\)
\(2\)
\(3\)
\(4\)
(c)
Find an integral which computes the arclength of the curve \(y=2^x-1\) defined on \([1,5]\text{.}\)
Activity 6.2.5 .
Consider the curve \(y=5e^{-x^2}\) over the interval \([-1,4]\text{.}\)
(a)
Estimate this arclength with 5 line segments where \(\Delta x=1\text{.}\)
(b)
Find an integral which computes this arclength.
Subsection 6.2.2 Videos
Figure 130. Video: Estimate the arclength of a curve with Riemann sums and find an integral which computes the arclength
Subsection 6.2.3 Exercises