Skip to main content
Calculus for Team-Based Inquiry Learning:
PREVIEW Edition — Instructor Version
TBIL Community
Contents
Search Book
close
Search Results:
No results.
Prev
Up
Next
Front Matter
Colophon
TBIL Resource Library
For Instructors
Video Resources
1
Limits (LT)
1.1
Limits Graphically (LT1)
1.1.1
Activities
1.1.2
Videos
1.1.3
Exercises
1.2
Limits Numerically (LT2)
1.2.1
Activities
1.2.2
Videos
1.2.3
Exercises
1.3
Limits Analytically (LT3)
1.3.1
Activities
1.3.2
Videos
1.3.3
Exercises
1.4
Continuity (LT4)
1.4.1
Activities
1.4.2
Videos
1.4.3
Exercises
1.5
Limits with Infinite Inputs (LT5)
1.5.1
Activities
1.5.2
Videos
1.5.3
Exercises
1.6
Limits with Infinite Outputs (LT6)
1.6.1
Activities
1.6.2
Videos
1.6.3
Exercises
2
Derivatives (DF)
2.1
Derivatives Graphically and Numerically (DF1)
2.1.1
Activities
2.1.2
Videos
2.1.3
Exercises
2.2
Derivatives Analytically (DF2)
2.2.1
Activities
2.2.2
Videos
2.2.3
Exercises
2.3
Elementary Derivative Rules (DF3)
2.3.1
Activities
2.3.2
Videos
2.3.3
Exercises
2.4
The Product and Quotient Rules (DF4)
2.4.1
Activities
2.4.2
Videos
2.4.3
Exercises
2.5
The Chain Rule (DF5)
2.5.1
Activities
2.5.2
Videos
2.5.3
Exercises
2.6
Differentiation Strategy (DF6)
2.6.1
Activities
2.6.2
Videos
2.6.3
Exercises
2.7
Differentiating Implicitly Defined Functions (DF7)
2.7.1
Activities
2.7.2
Videos
2.7.3
Exercises
2.8
Differentiating Inverse Functions (DF8)
2.8.1
Activities
2.8.2
Videos
2.8.3
Exercises
3
Applications of Derivatives (AD)
3.1
Tangents, Motion, and Marginals (AD1)
3.1.1
Activities
3.1.2
Videos
3.1.3
Exercises
3.2
Linear Approximation (AD2)
3.2.1
Activities
3.2.2
Videos
3.2.3
Exercises
3.3
Related Rates (AD3)
3.3.1
Activities
3.3.2
Videos
3.3.3
Exercises
3.4
Extreme Values (AD4)
3.4.1
Activities
3.4.2
Videos
3.4.3
Exercises
3.5
Derivative Tests (AD5)
3.5.1
Activities
3.5.2
Videos
3.5.3
Exercises
3.6
Concavity and Inflection (AD6)
3.6.1
Activities
3.6.2
Videos
3.6.3
Exercises
3.7
Graphing with Derivatives (AD7)
3.7.1
Activities
3.7.2
Videos
3.7.3
Exercises
3.8
Applied Optimization (AD8)
3.8.1
Activities
3.8.2
Videos
3.8.3
Exercises
3.9
Limits and Derivatives (AD9)
3.9.1
Activities
3.9.2
Videos
3.9.3
Exercises
4
Definite and Indefinite Integrals (IN)
4.1
Geometry of Definite Integrals (IN1)
4.1.1
Activities
4.1.2
Videos
4.1.3
Exercises
4.2
Approximating Definite Integrals (IN2)
4.2.1
Activities
4.2.2
Videos
4.2.3
Exercises
4.3
Elementary Antiderivatives (IN3)
4.3.1
Activities
4.3.2
Videos
4.3.3
Exercises
4.4
Initial Value Problems (IN4)
4.4.1
Activities
4.4.2
Videos
4.4.3
Exercises
4.5
FTC for Definite Integrals (IN5)
4.5.1
Activities
4.5.2
Videos
4.5.3
Exercises
4.6
FTC for Derivatives of Integrals (IN6)
4.6.1
Activities
4.6.2
Videos
4.6.3
Exercises
4.7
Area Under Curves (IN7)
4.7.1
Activities
4.7.2
Videos
4.7.3
Exercises
4.8
Area Between Curves (IN8)
4.8.1
Activities
4.8.2
Videos
4.8.3
Exercises
5
Techniques of Integration (TI)
5.1
Substitution Method (TI1)
5.1.1
Activities
5.1.2
Videos
5.1.3
Exercises
5.2
Integration by Parts (TI2)
5.2.1
Activities
5.2.2
Videos
5.2.3
Exercises
5.3
Integration of Trigonometry (TI3)
5.3.1
Activities
5.3.2
Videos
5.3.3
Exercises
5.4
Trigonometric Substitution (TI4)
5.4.1
Activities
5.4.2
Videos
5.4.3
Exercises
5.5
Tables of Integrals (TI5)
5.5.1
Activities
5.5.2
Videos
5.5.3
Exercises
5.6
Partial Fractions (TI6)
5.6.1
Activities
5.6.2
Videos
5.6.3
Exercises
5.7
Integration Strategy (TI7)
5.7.1
Activities
5.7.2
Videos
5.7.3
Exercises
5.8
Improper Integrals (TI8)
5.8.1
Activities
5.8.2
Videos
5.8.3
Exercises
6
Applications of Integration (AI)
6.1
Average Value (AI1)
6.1.1
Activities
6.1.2
Videos
6.1.3
Exercises
6.2
Arclength (AI2)
6.2.1
Activities
6.2.2
Videos
6.2.3
Exercises
6.3
Volumes of Revolution (AI3)
6.3.1
Activities
6.3.2
Videos
6.3.3
Exercises
6.4
Surface Areas of Revolution (AI4)
6.4.1
Activities
6.4.2
Videos
6.4.3
Exercises
6.5
Density, Mass, and Center of Mass (AI5)
6.5.1
Activities
6.5.2
Videos
6.5.3
Exercises
6.6
Work (AI6)
6.6.1
Activities
6.6.2
Videos
6.6.3
Exercises
6.7
Force and Pressure (AI7)
6.7.1
Activities
6.7.2
Videos
6.7.3
Exercises
7
Coordinates and Vectors (CO)
7.1
Parametric/Vector Equations (CO1)
7.1.1
Activities
7.1.2
Videos
7.1.3
Exercises
7.2
Parametric/Vector Derivatives (CO2)
7.2.1
Activities
7.2.2
Videos
7.2.3
Exercises
7.3
Parametric/Vector Arclength (CO3)
7.3.1
Activities
7.3.2
Videos
7.3.3
Exercises
7.4
Polar Coordinates (CO4)
7.4.1
Activities
7.4.2
Videos
7.4.3
Exercises
7.5
Polar Arclength (CO5)
7.5.1
Activities
7.5.2
Videos
7.5.3
Exercises
7.6
Polar Area (CO6)
7.6.1
Activities
7.6.2
Videos
7.6.3
Exercises
8
Sequences and Series (SQ)
8.1
Sequence Formulas (SQ1)
8.1.1
Activities
8.1.2
Videos
8.1.3
Exercises
8.2
Sequence Properties and Limits (SQ2)
8.2.1
Activities
8.2.2
Videos
8.2.3
Exercises
8.3
Partial Sums and Series (SQ3)
8.3.1
Activities
8.3.2
Videos
8.3.3
Exercises
8.4
Geometric Series (SQ4)
8.4.1
Activities
8.4.2
Videos
8.4.3
Exercises
8.5
Basic Convergence Tests (SQ5)
8.5.1
Activities
8.5.2
Videos
8.5.3
Exercises
8.6
Comparison Tests (SQ6)
8.6.1
Activities
8.6.2
Videos
8.6.3
Exercises
8.7
Ratio and Root Tests (SQ7)
8.7.1
Activities
8.7.2
Videos
8.7.3
Exercises
8.8
Absolute Convergence (SQ8)
8.8.1
Activities
8.8.2
Videos
8.8.3
Exercises
8.9
Series Convergence Strategy (SQ9)
8.9.1
Activities
8.9.2
Videos
8.9.3
Exercises
9
Power Series (PS)
9.1
Power Series (PS1)
9.1.1
Activities
9.1.2
Videos
9.1.3
Exercises
9.2
Convergence of Power Series (PS2)
9.2.1
Activities
9.2.2
Videos
9.2.3
Exercises
9.3
Manipulation of Power Series (PS3)
9.3.1
Activities
9.3.2
Videos
9.3.3
Exercises
9.4
Taylor Series (PS4)
9.4.1
Activities
9.4.2
Videos
9.4.3
Exercises
Backmatter
A
A Short Table of Integrals
B
List of Trigonometric Identities
🔗
Appendix
B
List of Trigonometric Identities
[
sin
(
α
)
]
2
+
[
cos
(
α
)
]
2
=
1
cos
(
α
+
β
)
=
cos
(
α
)
cos
(
β
)
−
sin
(
α
)
sin
(
β
)
sin
(
α
+
β
)
=
sin
(
α
)
cos
(
β
)
+
cos
(
α
)
sin
(
β
)
cos
(
2
α
)
=
[
cos
(
α
)
]
2
−
[
sin
(
α
)
]
2
=
2
[
cos
(
α
)
]
2
−
1
=
1
−
2
[
sin
(
α
)
]
2
sin
(
2
α
)
=
2
sin
(
α
)
cos
(
α
)
[
cos
(
α
)
]
2
=
1
+
cos
(
2
α
)
2
[
sin
(
α
)
]
2
=
1
−
cos
(
2
α
)
2
sin
(
α
)
cos
(
β
)
=
sin
(
α
+
β
)
+
sin
(
α
−
β
)
2
sin
(
α
)
sin
(
β
)
=
cos
(
α
−
β
)
−
cos
(
α
+
β
)
2
cos
(
α
)
sin
(
β
)
=
sin
(
α
+
β
)
−
sin
(
α
−
β
)
2
cos
(
α
)
cos
(
β
)
=
cos
(
α
−
β
)
+
cos
(
α
+
β
)
2
sin
(
α
)
+
sin
(
β
)
=
2
sin
(
α
+
β
2
)
cos
(
α
−
β
2
)
sin
(
α
)
−
sin
(
β
)
=
2
cos
(
α
+
β
2
)
sin
(
α
−
β
2
)
cos
(
α
)
+
cos
(
β
)
=
2
cos
(
α
+
β
2
)
cos
(
α
−
β
2
)
cos
(
α
)
−
cos
(
β
)
=
−
2
sin
(
α
+
β
2
)
sin
(
α
−
β
2
)