Skip to main content Contents
Prev Up Next \(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 5.4 Trigonometric Substitution (TI4)
Learning Outcomes
Subsection 5.4.1 Activities
Activity 5.4.1 .
Consider \(\displaystyle \int \sqrt{9-4x^2} \,dx\text{.}\) Which substitution would you choose to evaluate this integral?
\(\displaystyle u=9-4x^2\)
\(\displaystyle u=\sqrt{9-4x^2}\)
\(\displaystyle u=3-2x\)
Substitution is not effective
Activity 5.4.2 .
To find \(\displaystyle \int \sqrt{9-4x^2} \,dx\text{,}\) we will need a more advanced substitution. Which of these candidates is most reasonable?
Let \(v\) satisfy \(9-4x^2=9-9e^{2v}=9e^{-2v}\text{.}\)
Let \(\theta\) satisfy \(9-4x^2=9-9\sin^2\theta=9\cos^2\theta\text{.}\)
Let \(w\) satisfy \(9-4x^2=4-8\ln|w|=4\ln|2w|\text{.}\)
Let \(\phi\) satisfy \(9-4x^2=4-4\cos^2\phi=4\sin^2\phi\text{.}\)
Activity 5.4.3 .
Fill in the missing \(\unknown\) s for the following calculation.
\begin{align*}
\text{Let }9-4x^2&=9-9\sin^2\theta=9\cos^2\theta\\
4x^2&=\unknown\\
x&=\unknown\\
dx&=\unknown\,d\theta
\end{align*}
\begin{align*}
\int\sqrt{9-4x^2} \,dx&=\int\sqrt{\unknown}\,(\unknown\,d\theta)\\
&= \int\frac{9}{2}\cos^2 \theta\,d\theta
\end{align*}
Activity 5.4.4 .
From
Section 5.3 we may find
\(\displaystyle \int\cos^2 \theta\,d\theta=\dfrac{1}{2}\theta+\dfrac{1}{2}\sin\theta\cos\theta+C\text{.}\)
Use this to continue your work in the previous activity and complete the integration by trigonometric substitution.
\begin{align*}
\sin(\theta)&=\unknown\\
\theta&=\arcsin(\unknown)\\
\cos(\theta)&=\unknown\sqrt{\unknown}
\end{align*}
\begin{align*}
\int\sqrt{9-4x^2} \,dx&= \cdots = \int\frac{9}{2}\cos^2 \theta\,d\theta\\
&= \frac{9}{2}\left(\frac{1}{2}\theta+\frac{1}{2}\sin\theta\cos\theta\right)+C\\
&= \frac{9}{4}(\unknown)+\dfrac{9}{4}(\unknown)(\unknown)+C
\end{align*}
Activity 5.4.5 .
Use similar reasoning to complete the following proof that \(\dfrac{d}{dx}\left[\arcsin(x)\right]=\dfrac{1}{\sqrt{1-x^2}}\text{.}\)
\begin{align*}
\text{Let }1-x^2&=1-\unknown\theta=\unknown\theta\\
x^2&=\unknown\\
x&=\unknown\\
dx&=\unknown\,d\theta\\
\theta&=\unknown
\end{align*}
\begin{align*}
\int \dfrac{1}{\sqrt{1-x^2}} \,dx&=\displaystyle \int\frac{1}{\sqrt{\unknown}}\,(\unknown\,d\theta)\\
&= \int \,d\theta\\
&= \unknown + C\\
&= \arcsin(x) + C
\end{align*}
Activity 5.4.6 .
Substitutions of the form
\begin{equation*}
16-25x^2=16-16\sin^2x=16\cos^2x
\end{equation*}
are made possible due to the Pythagorean identity \(\sin^2(x)+\cos^2(x)=1\text{.}\)
Which two of these four identities can be obtained from dividing both sides of \(\sin^2(x)+\cos^2(x)=1\) by \(\cos^2(x)\) and rearranging?
\(\displaystyle \tan^2(x)-1=\sec^2(x)\)
\(\displaystyle \tan^2(x)+1=\sec^2(x)\)
\(\displaystyle \sec^2(x)-1=\tan^2(x)\)
\(\displaystyle \sec^2(x)+1=\tan^2(x)\)
Activity 5.4.8 .
Complete the following trigonometric substitution to find \(\displaystyle\int\dfrac{3}{4+25x^2}\,dx\text{.}\)
\begin{align*}
\text{Let }4+25x^2&=2+\unknown\theta=\unknown\theta\\
25x^2&=\unknown\\
x&=\unknown\\
dx&=\unknown\,d\theta\\
\theta&=\unknown
\end{align*}
\begin{align*}
\int\frac{3}{4+25x^2}\,dx &=\int\dfrac{3}{\unknown}\,(\unknown\,d\theta)\\
&= \int \unknown \, d\theta\\
&= \unknown + C\\
&= \dfrac{3}{10}\arctan\left(\dfrac{5}{2}x\right) + C
\end{align*}
Activity 5.4.9 .
Complete the following trigonometric substitution to find \(\displaystyle\int\dfrac{7}{x\sqrt{9x^2-16}}\,dx\text{.}\)
\begin{align*}
\text{Let }9x^2-16&=\unknown\theta-16=\unknown\theta\\
9x^2&=\unknown\\
x&=\unknown\\
dx&=\unknown\,d\theta\\
\theta&=\unknown
\end{align*}
\begin{align*}
\displaystyle \int\dfrac{7}{x\sqrt{9x^2-16}}\,dx &=\int\dfrac{7}{\unknown\sqrt{\unknown}}\,(\unknown\,d\theta)\\
&= \int \unknown\, d\theta\\
&= \unknown + C\\
&= \frac{7}{4}\arcsec\left(\dfrac{3}{4}x\right) + C
\end{align*}
Activity 5.4.10 .
Use appropriate trigonometric substitutions and the given trigonometric integrals to find each of the following.
(a)
\begin{align*}
\int \frac{\sqrt{-9 \, x^{2} + 16}}{x^{2}}\,dx &= \cdots \\
&=\int \frac{3\cos^2\theta}{\sin^2\theta}\,d\theta\\
&=-3\theta-3\frac{\cos\theta}{\sin\theta}+C\\
&= - 3 \, \arcsin\left(\unknown\right)-\frac{\sqrt{\unknown}}{\unknown} +C
\end{align*}
(b)
\begin{align*}
\int \frac{2 \, \sqrt{9 \, x^{2} - 16}}{x}\,dx &= \cdots \\
&=\int 8\tan^2\theta\,d\theta\\
&=8\tan\theta-8\theta+C\\
&= \unknown \, \sqrt{\unknown} - 8 \, \operatorname{arcsec}\left(\unknown\right) +C
\end{align*}
(c)
\begin{align*}
\int \frac{1}{\sqrt{81 \, x^{2} + 4}}\,dx&= \cdots \\
&=\int \frac{1}{9}\sec\theta\,d\theta\\
&=\frac{1}{9}\log|\sec\theta+\tan\theta|+C\\
&= \frac{1}{9} \, \log\left| \unknown + \frac{1}{2} \, \sqrt{\unknown} \right| +C
\end{align*}
Activity 5.4.11 .
Consider the unit circle \(x^2+y^2=1\text{.}\) Find a function \(f(x)\) so that \(y=f(x)\) is the graph of the upper-half semicircle of the unit circle.
Activity 5.4.12 .
(a)
(b)
How does this value compare to what we know about areas of circles?
Subsection 5.4.2 Videos
Figure 114. Video: Use trigonometric substitution to compute indefinite integrals
Subsection 5.4.3 Exercises