Skip to main content Contents
Prev Up Next \(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 6.4 Surface Areas of Revolution (AI4)
Learning Outcomes
Subsection 6.4.1 Activities
Fact 6.4.1 .
A
frustum is the portion of a cone that lies between one or two parallel planes.
Figure 135. Plot of a frustum.
The surface area of the “side” of the frustum is:
\begin{equation*}
2\pi \frac{r+R}{2}\cdot l
\end{equation*}
where \(r\) and \(R\) are the radii of the bases, and \(l\) is the length of the side.
Note that if \(r=R\text{,}\) this reduces to the surface area of a “side” of a cylinder.
Activity 6.4.2 .
Suppose we wanted to find the surface area of the the solid of revolution generated by rotating
\begin{equation*}
y=\sqrt{x}, 0\leq x\leq 4
\end{equation*}
about the
\(y\) -axis.
Bounded region rotated about \(x\) -axis.
Figure 136. Plot of bounded region rotated about \(x\) -axis.
(a)
Suppose we wanted to estimate the surface area with two frustums with
\(\Delta x=2\text{.}\)
Bounded region rotated about \(x\) -axis.
Figure 137. Plot of bounded region rotated about \(x\) -axis. What is the surface area of the frustum formed by rotating the line segment from
\((0,0)\) to
\((2, \sqrt{2})\) about the
\(x\) -axis?
\(\displaystyle 2\pi \frac{0+\sqrt{2}}{2}\cdot2\)
\(\displaystyle 2\pi \frac{0+\sqrt{2}}{2}\cdot\sqrt{2^2+\sqrt{2}^2}\)
\(\displaystyle \pi \sqrt{2}^2\cdot2\)
\(\displaystyle \pi \sqrt{2}^2\cdot\sqrt{2^2+\sqrt{2}^2}\)
(b)
Bounded region rotated about \(x\) -axis.
Figure 138. Plot of bounded region rotated about the \(x\) -axis. What is the surface area of the frustum formed by rotating the line segment from
\((2,\sqrt{2})\) to
\((4, 2)\) about the
\(x\) -axis?
\(\displaystyle 2\pi \frac{4+\sqrt{2}}{2}\cdot\sqrt{2}\)
\(\displaystyle 2\pi \frac{4+\sqrt{2}}{2}\cdot\sqrt{6}\)
\(\displaystyle 2\pi \frac{4+\sqrt{2}}{2}\cdot\sqrt{6-2\sqrt{2}}\)
(c)
Suppose we wanted to estimate the surface area with four frustums with
\(\Delta x=1\text{.}\)
Bounded region rotated about \(x\) -axis.
Figure 139. Plot of bounded region rotated about \(x\) -axis.
\begin{equation*}
\begin{array}{|c|c|c|c|c|c|}
\hline
x_i & \Delta x & r_i & R_i & l & \text{Estimated Surface Area}\\
\hline
x_1=0 & 1 & 0 & 1 & \sqrt{1^2+1^2} &\\
\hline
x_2=1 & 1& 1 & \sqrt{2} & \sqrt{1^2+(\sqrt{2}-1)^2} & \\
\hline
x_3=2 & 1& \sqrt{2} & \sqrt{3} & \\
\hline
x_4=3 & 1 & 3 & 2 & \\
\hline
\end{array}
\end{equation*}
(d)
Suppose we wanted to estimate the surface area with
\(n\) frustums.
Bounded region rotated about \(x\) -axis.
Figure 140. Plot of bounded region rotated about \(x\) -axis. Let
\(f(x)=\sqrt{x}\text{.}\) Which of the following expressions represents the surface area generated bo rotating the line segment from
\((x_0, f(x_0))\) to
\((\Delta x, f(x_0+\Delta x))\) about the
\(x\) -axis?
\(\displaystyle \pi \left(\frac{f(x_0)+f(x_0+\Delta x)}{2}\right)^2\sqrt{(\Delta x)^2+(f(x_0+\Delta x)-f(x_0))^2}\text{.}\)
\(\displaystyle 2\pi\frac{f(x_0)+f(x_0+\Delta x)}{2}\sqrt{(\Delta x)^2+(f(x_0+\Delta x)-f(x_0))^2}\text{.}\)
\(\displaystyle 2\pi\frac{f(x_0)+f(x_0+\Delta x)}{2}\Delta x\text{.}\)
(e)
Which of the following Riemann sums best estimates the surface area of the solid generated by rotating \(y=\sqrt{x}\) over \([0,4]\) about the \(x\) -axis ? Let \(f(x)=\sqrt{x}\text{.}\)
\(\displaystyle \sum \pi \left(\frac{f(x_i)+f(x_i+\Delta x)}{2}\right)^2\sqrt{(\Delta x)^2+(f(x_i+\Delta x)-f(x_i))^2}\text{.}\)
\(\displaystyle \sum 2\pi\frac{f(x_i)+f(x_i+\Delta x)}{2}\sqrt{(\Delta x)^2+(f(x_i+\Delta x)-f(x_i))^2}\text{.}\)
\(\displaystyle \sum 2\pi\frac{f(x_i)+f(x_0+\Delta x)}{2}\Delta x\text{.}\)
Fact 6.4.3 .
\begin{align*}
\lim_{\Delta x\to 0}\sqrt{(\Delta x)^2+(f(x_i+\Delta x)-f(x_i))^2} & = \lim_{\Delta x\to 0} \sqrt{(\Delta x)^2\left(1+\left(\frac{f(x_i+\Delta x)-f(x_i)}{\Delta x} \right)^2\right)}\\
&= \lim_{\Delta x\to 0} \sqrt{1+\left(\frac{f(x_i+\Delta x)-f(x_i)}{\Delta x} \right)^2}\Delta x\\
&=\sqrt{1+(f'(x))^2}dx,
\end{align*}
and that
\begin{equation*}
\lim_{\Delta x\to 0} \frac{f(x_i)+f(x_i+\Delta x)}{2}=f(x_i).
\end{equation*}
Thus given a function \(f(x)\geq 0\) over \([a,b]\text{,}\) the surface area of the solid generated by rotating this function about the \(x\) -axis is
\begin{equation*}
SA=\int_a^b 2\pi f(x)\sqrt{1+(f'(x))^2}dx.
\end{equation*}
Activity 6.4.4 .
Consider again the solid generated by rotating \(y=\sqrt{x}\) over \([0,4]\) about the \(x\) -axis.
(a)
Find an integral which computes the surface area of this solid.
(b)
If we instead rotate \(y=\sqrt{x}\) over \([0,4]\) about the \(y\) -axis, what is an integral which computes the surface area for this solid?
Activity 6.4.5 .
Consider again the function \(f(x)=\ln(x)+1\) over \([1,5]\text{.}\)
(a)
Find an integral which computes the surface area of the solid generated by rotating the above curve about the \(x\) -axis.
(b)
Find an integral which computes the surface area of the solid generated by rotating the above curve about the \(y\) -axis.
Subsection 6.4.2 Videos
Figure 141. Video: Compute surface areas of surfaces of revolution
Subsection 6.4.3 Exercises